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ABSTRACT

This paper gives an overview of the NASA F- 18 High Alpha Research Vehicle. The three flight

phases of the program are introduced, along with the specific goals and data examples taken during

each phase. The aircraft configuration and systems needed to perform the disciplinary and

interdisciplinary research are discussed. "The specific disciplines involved with the flight research

are introduced, including aerodynamics, controls, propulsion, systems, and structures. Decisions

that were made early in the planning of the aircraft project and the results of those decisions are

briefly discussed. Each of the three flight phases corresponds to a particular aircraft configuration,

and the research dictated the configuration to be flown. The first phase gathered data with the

baseline F-18 configuration. The second phase was the thrust-vectoring phase. The third phase

used a modified forebody with deployable nose strakes. Aircraft systems supporting these flights

included extensive instrumentation systems, integrated research flight controls using flight control

hardware and corresponding software, analog interface boxes to control forebody strakes, a thrust-

vectoring system using external postexit vanes around axisymmetric nozzles, a forebody vortex

control system with strakes, and backup systems using battery-powered emergency systems and a

spin recovery parachute.

NOMENCLATURE

ANSER

CRAFT

DPRAM

FCC

FS

HAIRRY

HANG

HARV

actuated nose strakes for enhanced rolling

control power, robustness, agility, and flying qualities tradeoffs

dual-port random access memory

flight control computer

fuselage station, in.

High-Angle-of-Incidence Requirements for Roll and Yaw

High-Alpha Nosedown Guidelines

High Alpha Research Vehicle



HATP

KEAS

LEX

MATV

MDA

NACA

NASA

OBES

PGME

RAV

RFCS

SRC

STEMS

TVCS

VISTA

0

High-Alpha Technology Program

knots equivalent airspeed

leading-edge extension

Multi-Axis Thrust Vectoring

McDonnell Douglas Aerospace

National Advisory Committee on Aeronautics

National Aeronautics and Space Administration

on-board excitation system

propylene glycol monomethyl ether

remotely augmented vehicle

research flight control system

spin recovery chute

standard test evaluation maneuvers set

thrust-vectoring control system

Variable-Stability In-Flight Simulator Test Aircraft

angle of attack, deg

radial nose angle, deg

INTRODUCTION

Interest in high-angle-of-attack flight has increased in recent years. High-angle-of-attack

research has progressed from stall characteristics to spin resistance and is now in the area of

poststall agility. To support this recent interest, NASA has developed the High-Alpha Technology

Program (HATP). One of the objectives of this program is flight validation of ground-based design

methodologies, and a modified F-18 aircraft was used to this end. This aircraft is called the NASA

F-18 High Alpha Research Vehicle (HARV).

History: Missile Platforms to Departures to Air Combat Maneuvering and Agility

Research into high-angle-of-attack flight has waned and revived over the history of aviation

(fig. 1).t,2 High-angle-of-attack research has also changed over the years. Initially, high-angle-of-

attack research was only concerned with stall characteristics. Research then evolved to departure

and spin characteristics, and now concentrates on exploring the poststall region of the high-angle-

of-attack envelope. Early jet aircraft emphasized high performance with classical metrics,
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primarily speedandaltitude.Theseaircraftweredesignedwith little regardfor flying qualitiesat
highangleof attack,t_, other than minimal attention to departure resistance. Aircraft that began as

gun platforms moved towards missile platforms. The F-1 O0 Super Sabre, the F-104 Starfighter, and

the F-4 (n6e F-110) Phantom II aircraft are examples of this trend.

High c_
research

1900 1920 1940 1960 1980
Year

Figure 1. Interest level of high-angle-of-attack activity.

I
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With a shift in emphasis back to air combat maneuvering from nonmaneuvering missile

platforms during the Vietnam conflict, 3 initial emphasis shifted back to air combat training with

existing aircraft. Development of aircraft to take advantage of high-or flight began later. Advances

made in fly-by-wire and fully digital flight controls allowed some degree of confidence in using

some of the high-t_ regime. The early examples of these aircraft were the F-16 and F/A-18 (n6e

YF-17), and today are the JAS-39 Gripen, the Euro-Fighter 2000, and the F-22 Lightning aircraft.

NASA Formulation of the High-Alpha Technology Program

With this recent interest in high-a flying qualities in the aircraft community, NASA has

emphasized high-t_ research as well, although NASA has always been interested in high-t_

flight. 4-7 Research conducted by NASA includes aileron rudder interconnects, thrust vectoring,

and unconventional control surfaces to allow greater enhancements in high-or flight dynamics

and solve classical problems such as wing rock, departure, nose slice, and high-or pitching-

moment discrepancy. 8'9 Ground-based research on thrust vectoring has demonstrated the promise

of being able to exert moments in corners of the envelope where aerodynamic forces and control



powerarevery low. Useof forebodyflows for aircraftcontrol athigh _ wasalsoshownto have
greatpotential.1°

Threehigh-orflight programsstartedin the 1980's:the X-31A researchaircraft,l_ the F-16
Variable-Stability In-Flight Simulator Test Aircraft (VISTA) Multi-Axis Thrust Vectoring
(MATV) project,12andtheNASA-sponsoredHATP usingtheHARV. 4'5'7'13-17 Stated objectives of

these programs were, respectively, demonstration of enhanced fighter maneuverability at poststall

angles of attack with a controlled-configuration vehicle design; retrofit of thrust vectoring on an

existing design to evaluate tactical usage of such a system; and a pure high-t_ research program to

understand basic high-o_ aerodynamics, possible control law synthesis, innovative control

effectors, inlet and engine integration research, and possible expansion of design guidelines.

All of the NASA aeronautics centers participated in the HATP, and the program was directed

by a representative steering committee (fig. 2). NASA Ames Research Center contributed

computational fluid dynamics and their '80- by 120-ft wind-tunnel facility. 18-21 NASA Langley

Research Center worked with subscale wind-tunnel testing, advanced control law synthesis, and

computational fluid dynamics. 1°.22-26NASA Lewis Research Center worked on inlet and engine

integration. 27'28 NASA Dryden Flight Research Center conducted the flight research with the
F- 18 HARV.
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Figure 2. High-angle-of-attack technology program organization.

The aircraft selected was the full-scale development F-18 Ship 6, now called the NASA F-18

HARV. 7'17'29 Prior to use for NASA research, this F-18 airframe had been used for the high-o_ and

spin testing of the F- 18 configuration. To gain more redundancy than exists in fleet F/A- 18 aircraft,

a battery-powered emergency system had been installed in this particular airframe. This aircraft

had also been previously fitted for a spin recovery chute (SRC). These special modifications for

this particular airframe led to its selection. The aircraft was subsequently modified extensively to
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include thrust vectoring, a unique instrumentationsystem,unique aircraft systems,additional
emergencysystems,amodifiedflight controlcomputer,29andlater, forebodystrakes.

VEHICLEAND SYSTEMDESCRIPTION

The aircraft configurationis describedbelow.The systemsusedon the HARV enabledthe
aircraftto performdifferentresearchmissions.Manyof thesesystemsareintroducedhere,suchas
theSRC,theemergencypowersystems,thethrust-vectoringcontrolsystem(TVCS), theresearch
flight control system(RFCS),the forebody strakesystem,the simulation,and the remotely
augmentedvehicle(RAV) system.

HighAlphaResearchVehicle

TheHARV hashadthreeconfigurations:thebaselineF-18configuration,thethrust-vectoring
installationconfiguration,andtheadditionalforebodyvortex-flow control configuration(fig. 3).
These three configurationscorrespondto the approximatephasesof the flight tests and are
discussedlater in the paper.This largeandambitiousflight testmatrixwasonly possiblewith a
phasedapproachto theprogram.TheHARV is afull-scaledevelopmentairframeof theF/A-18A
aircraftandis atwin-engine,single-place,fighter/attackaircraft.Theearlyaircraft usedtheF-18

EC8962-1

(a)Phaseone,noTVCS,noANSERsystem.

Figure3. HARVconfigurationfor thethreephasesof theflight program.



EC910028-9
(b) Phasetwo,TVCS installed,noANSERsystem.

EC9543197-1
(c) Phasethree,TVCSinstalled,ANSERsysteminstalled.

Figure3. Concluded.

type designation,of which the HARV aircraft is one.Later, the U.S. Navy changedthe type
designationto F/A-18to alignthedesignationwith thediverserolesof fighterandattack.TheF-18
aircraft was built for the U.S. Navy by McDonnell Douglas Aerospace(MDA) (St. Louis,
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Missouri) and the Northrop Corporation (Newbury Park, California). The HARV is powered by

two modified General Electric (Lynn, Massachusetts) F41M-GE-400 afterburning turbofan engines

rated at approximately 16,000 lbf static thrust at sea level. The F-18 aircraft features a midwing

configuration with a wing-root leading-edge extension (LEX) that extends from the forward

portion of the fuselage and blends into the wing (fig. 4). Table 1 shows the HARV nominal

969689

Figure 4. Three views of the HARV general layout (phase two TVCS configuration).
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dimensions and weights. The flight envelope was also limited with the various systems on board

the aircraft (fig. 5), although with the SRC installed and the center of gravity forward of
26.5 percent mean aerodynamic chord, the aircraft was not limited in o_.

Table 1. Nominal dimensions of the NASA F-18 HARV. Internal fuel

is 6480 Ibm, which corresponds to approximately 60 percent fuel.

The HARV is in the clean configuration, with landing gear retracted

and pilot and support equipment included.

Phases two

Parameter Phase one and three

Weight, Ibm 31,980 36,099

Reference wing area, ft2 400 400

Reference mean aerodynamic chord, ft 11.52 11.52

Reference span, ft 37.4 37.4

Overall length, ft 56 56

Center of gravity

Percent mean aerodynamic chord 21.9 23.8

Fuselage station 454.33 456.88

Waterline 105.24 105.35

Roll inertia, slug-ft 2 22,040 22,789

Pitch inertia, slug-ft 2 124,554 176,809

Yaw inertia, slug-ft 2 139,382 191,744

Product inertia, slug-ft a -2,039 -2,305

Wing aspect ratio 3.5 3.5

Stabilator span, ft 21.6 21.6

Stabilator area, ft 2 88.26 86.48

The HARV carries no stores or missiles and is highly instrumented for research purposes. The

wingtip launching rails and missiles were replaced with wingtip camera pods and airdata sensors.

The in-flight refueling capability and tail arresting hook were retained; 24 flights were made with
in-flight refueling, but the tailhook was never used.

For the first phase of the flight test program, the aircraft was flown in the baseline configuration

as described above. In this configuration, the maximum attainable trim _ was approximately 55 °,
limited by the maximum aerodynamic control. Most HARV modifications were internal for this

phase of the program and consisted mostly of an extensive instrumentation system for recording

research aircraft parameters of interest. Also incorporated in this phase were onboard systems to
emit an evaporating dye, propylene glycol monomethyl ether (PGME), to mark on-surface
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forebody streamlines, 3° and smoke to trace off-surface flows around the forebody and the LEX

vortices. 3]-35 Later, the ports used for the PGME were plumbed to pressure instrumentation so that

extensive pressure surveys could be made of the aircraft forebody. Early in this phase a noseboom
was installed and calibrated for airdata. The noseboom was known to interfere with forebody

flows, so wingtip airdata probes mounted on wingtip pods were fabricated and calibrated so that

the noseboom could subsequently be removed. A rotating rake was installed on the LEX to

measure vortex characteristics for a few flights. 36 Late in the first flight phase, an SRC was

installed on the aft fuselage of the aircraft to prepare for the upcoming thrust-vectoring flights.

Near the end of phase one, vertical longitudinal fences were installed on each LEX upper

surface. These fences were developed as a modification to the U.S. Navy F/A-18 aircraft to reduce

tail buffeting and increase structural life. Because of the desire to maintain a consistent external

geometry for aerodynamic research with established ground and flight aerodynamic data bases,

these fences were generally not used during aerodynamic characterization research on the HARV

aircraft. An aerodynamic evaluation of these fences was conducted, and they were used for most

of the TVCS and the actuated nose strakes for enhanced rolling (ANSER) research with controls,

flying qualities, propulsion, and handling qualities.

Also incorporated near the end of the phase one flight test program, in preparation for phase

two, was a set of battery-powered emergency backup systems. These battery-powered systems

were to power the hydraulics, electronics, and electrical systems of the aircraft in the event of a

dual-engine flameout. These systems were from the original U.S. Navy spin testing of the aircraft.
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Thesecondphaseof the flight test program was centered on the TVCS. Six paddle-like vanes

were positioned, three around each engine, so that they could impinge on the exhaust flow and

create thrust vectoring. With these vanes functional, an additional 15 ° of trim o_are available to a
maximum 70 ° o_.

The conventional F-18 flight control system was modified to include an RFCS and the

capability to command the thrust-vectoring vane actuators. The RFCS was an embedded computer

executing research flight control laws that could be engaged and disengaged by the pilot within a

limited envelope. The RFCS control laws and F-18 701E computer (General Electric, Lynn,

Massachusetts) control laws operate in parallel; both computed continuously throughout the flight.

The conventional F-18 control laws were used for takeoff, for landing, and as a backup in case of

RFCS failure. The second set of control laws was a research control law set. 37 The hardware to

accommodate this dual set of flight control laws resulted in one of the single largest changes ever

incorporated in F-18 flight control computers (FCCs). During this phase, the aircraft underwent a

second major downtime to make an extensive modification to instrumentation, including an inlet
rake in the right engine. 27

The final flight phase of the HARV project emphasized forebody vortex-flow control. A

modified forebody was fabricated at NASA Langley with mechanically actuated strakes. NASA

Langley also designed the control laws to control the forebody control surfaces. The strakes are the

aerodynamic surfaces of the ANSER system, but some extensive internal changes, both hardware

and software, were made as well. An analog interface box was required to perform fault detection

and control of the actuators for the strakes. When the RFCS was designed, the intent was to only

control the six vanes of the TVCS, but the addition of the strakes for the ANSER system required
two new command paths out of the FCCs, which required the analog interface box. The control law

release was also called ANSER. NASA Ames had proposed an alternative concept using slot

blowing. 38-'4° The project could only take one concept to flight, and the NASA Langley actuated

strake was selected as a more mature technology than the other concepts.

Data Acquisition and Research Instrumentation

The instrumentation system used for data acquisition changed greatly over the course of the life

of the aircraft. The original instrumentation system provided aircraft attitudes, rates, center-of-

gravity and cockpit accelerations, angular accelerations, oc, angle of sideslip, multiple total and

static pressures, aerodynamic surface pressures, total temperature, stick and rudder-pedal forces

and positions, control surface positions, fuel quantities, strains, temperatures, and discretes such as

switch positions. Wingtip probes that provided research airdata were updated from a National

Advisory Committee on Aeronautics (NACA) probe configuration to a free-swiveling self-

aligning probe configuration, although the tip retained a similar configuration to the NACA probe
tip. A second instrumentation system was added to obtain 1553 bus data from the FCCs, mission

computers, inertial navigation system and other remote terminals, aerodynamic surface pressures,

aeroservoelastic accelerometers, nose and wing flush airdata sensing pressures, engine pressures,

strains, temperatures, and discretes such as nose strake interface box status bits. Thrust-vectoring

vane loads and critical temperatures were added for phase two, and additional forward fuselage
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loads,interfaceboxparameters,andnosestrakeinstrumentationwereaddedfor thethirdphaseof
theflight program.Eachof thesesystemswastelemeteredwith no recordingonboardtheaircraft.
A researchinlet rakewasinstalledin theright inlet duct (fig. 6), anda third systemwasprovided
to obtainthe inlet researchdata.In orderto avoida third telemetrystream,the third systemwas
digitally recordedonboard.

EC9341084-7

Figure6. Instrumentedinlet rakeinstalledin theright inlet (looking aft).

Maximumdatarateswereashighas2142samples/secandasmanyasnearly2000parameters.
Control roomdisplayswereplannedin advanceto optimizemonitoringscans,for familiarization,
andto maximizepotentialflight researchtime. Examplesshownareof the spinpage,asusedby
the missioncontroller during high-t_andhigh-yaw-ratemaneuvers(fig. 7), and the flightpath
reconstructorusedby flight mechanicsresearchersto monitor aircraft motionsand stateduring
parameteridentificationmaneuvers(fig. 8).42

SpinRecoveryChute

An SRC was added to the aircraft late in the first phase. This system was a significant

modification to the aerodynamics of the aircraft. The SRC system was previously used by MDA

and the U.S. Navy for the spin testing done in the full-scale development testing of the F-18. This

system was reinstalled to reduce the amount of validation required of the flight control software

for high-or flight. High-or velocity-vector rolls with thrust vectoring, which were planned, were

anticipated to appear exactly identical to spins in conventional aircraft. 42 The SRC installation was
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Figure 7. Mission controller spin page display for monitoring high-or and high-yaw-rate

maneuvers.

done as further risk reduction in the event of a failure of the thrust-vectoring system and the

subsequent failure of conventional control-recovery techniques. The aircraft limitations with the
SRC installed were Mach 0.9 and 600 knots equivalent airspeed (KEAS). The system was never

fired in flight, but was test-fired during a high-speed taxi test (fig. 9). Flight test during phase two

proved the aircraft could recover using control surfaces during low and oscillatory spin modes,
control law down modes (reversion from RFCS control laws to 701E computer control laws) at

peak yaw rates of velocity-vector roll to simulate failures and recovery, and control law down

modes with maximum aggravated control inputs during velocity-vector rolls.

During phase three, simulation studies revealed that asymmetric strake failures at high g and

high o_ (40°-55 ° ct) resulted in unacceptable recovery characteristics. A positive strake closure

system was designed, and the SRC was retained for all of phase three. When envelope expansion

of each phase was complete, however, the SRC system was found to be of lessening importance,
but no method was found where its deletion could be made, even after envelope expansion.

Operationally, the SRC consumed a great deal of time--time that could have been better spent on
research tasks had the SRC been removed from the aircraft.

12
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Figure 8. Flightpath reconstructor as used by flight mechanics researchers during parameter

identification maneuvers.

Emergency Power Backup Systems

Battery-operated emergency power systems were installed in the aircraft at the end of phase

one in preparation for phase two. These systems were previously used in the full-scale

development spin tests, reducing certification time for the HARV application. The intent of these

systems was to continue aircraft systems operation in the event of a dual-engine flameout or
unrecoverable dual-engine stalls. If called upon, the emergency power system provides power for

FCCs, mission computers, inertial systems, and airdata computers. Additionally, the batteries

power a hydraulic pump to provide hydraulic pressure to the aircraft control-surface actuators. The

system was modified from the U.S. Navy spin flight configuration by increasing battery capacity,

and power could be maintained for approximately 14 min using continuous maximum control-
surface motions. At the end of phase two, the project team concluded the aircraft envelope had been

sufficiently cleared out so that the emergency system could be removed without excessive risk, and

13
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EC91-518-21
Figure9. Spinrecoverychuteasinstalledanddemonstrated.

that theusefullife of the systemhadbeenrun. Theemergencypowersystemwasremoved.This
decisionwasbasedon the excellentrecordof 0 unintentionalenginestallsduring 277 high-oc
flights. A totalof 383high-o_flights wasmadewith0 unintentionalenginestalls.
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Thrust-Vectoring Control System

The TVCS was primarily a mechanical system of three high-temperature nickel steel vanes, or

paddles, installed around each engine. As existing structure and the SRC of the aircraft had to be

considered, the vanes were not equally spaced around the engines or equally sized (fig. 10).

Extensive heat shielding was required to prevent excessive temperatures from impinging on the

systems and aircraft in the aft fuselage area. These minor variations in spacing and sizing resulted

in a slight asymmetry to the thrust-vectoring effectiveness control power. 43-46This implementation
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of a TVCS was intended only as a research system. No effort was expended on making the system

more than a boilerplate operational system to allow research to be gathered, because maintenance

is intensive on such a system and useful life of the system was expected to be short.

With the TVCS and SRC installed, the project had to contend with a large weight and balance

problem. The installation of the TVCS increased the weight by 2200 Ibm. The addition of the SRC,

emergency systems, and ballast* increased the weight by an additional 1500 Ibm, and 419 Ibm was

added by equipment and wiring not directly related to the TVCS.

With this additional weight, the inertia values were approximately 50 percent greater than the

previous flight-tested maximum for the interdiction mission. As a result, the maximum

symmetric g allowed was reduced to 5.4 and -2.0. During asymmetric maneuvering, the aircraft
was limited to between 4.3 g and 0 g. In addition, the weight distribution acted as a pitch damper

and was perceived as a time delay to the pilot when flying exceptionally high gain tasks.

Failure in these cases was anticipated in the aft cockpit canopy sill area near fuselage station

(FS) 300, possibly hampering ejection, so instrumentation strain gages were installed and
monitored for the remainder of the program. Installation of the TVCS limited maximum speed to

450 KEAS on the HARV aircraft. These g and airspeed limitations were the results of analysis only;

no extensive flight envelope clearance was done in the program. The system might have been

capable of a much greater performance envelope than was used had there been a such requirement.

Research Flight Control System

In order to control the six new control surfaces, a modification was made to the EGGs. 7'47 The

Pace 1750A (Performance Semiconductor Corp., Sunnyvale, California) FCCs were modified to

incorporate a dual-port random access memory (DPRAM) and RFCS (fig. 11). The purpose of

the DPRAM was to pass parameters back and forth between the 701E computers and the RFCS.

The purpose of the RFCS was to allow rapid changes and reduced development time for

experimental control laws of the unique control effectors in the high-or envelope. For the most

part, the RFCS flight control software was designed to be class B software and not flight critical.

As such, the verification and validation of the RFCS flight control software was greatly

streamlined, allowing rapid changes to be effected in the event of unexpected research results.

This class B capability of the FCCs made the aircraft a very flexible and capable research tool,

where different systems could be flown and compared back-to-back with other systems on an

aircraft of a known configuration. Changes of this sort were done many times in the course of the

program, and this innovative approach and execution greatly aided in gathering timely and
effective research data. Having a dedicated research team in place that could rapidly handle

changes provided a very flexible approach to problem solving. Parts of the control law executive
and some limit functions were deemed flight critical, and thus were isolated in the software and

tested according to class A standards.

*To maintain an acceptable center of gravity, a total ballast of 893 Ibm was added to the forward fuselage.
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Figure 11. Flight control computers incorporating a research flight control system.

During phase one, the 701E computers had carried the then-current fleet production

8.3.3 flight control law release by MDA. With the RFCS upgrade, the 701E computers were

updated to the new release of the fleet production MDA 10.1 F-18 release. The RFCS control laws

would be engaged within certain envelope restrictions imposed by the flight control law software.

The envelope for RFCS flight was restricted to less than Mach 0.7, a minimum altitude of

15,000 ft mean sea level, and an initial maximum altitude of 35,000 ft mean sea level that was

later expanded to 45,000 ft mean sea level. Because of potential errors in the flight software within
the RFCS control laws, the 701E computer control laws were always retained as a backup. Any

RFCS anomalies that might threaten the aircraft would be mitigated by reverting to the 701E

computer control laws. As figure 11 shows, the basic F-18 control system retained control over all

input and output signal management functions, including commands to the thrust-vectoring vanes.
When the RFCS was not engaged, the basic system commanded the vanes to a fixed, retracted

position of-10 deg. A solenoid-latched switch was installed on the instrument panel to arm the

system, and the nosewheel steering switch on the stick was selected to engage the RFCS. To

disengage, the pilot activated the paddle switch to revert to 701E computer control laws. All

control laws used a programmable fade to prevent instant gain changes. Later, the Pace 1750A

processors were upgraded to the Pace 1750AE configuration.

Research functions were also implemented in the mission computers and selectable through the

digital-display interfaces. These research functions included the synthesis of some control system
feedbacks not available in the standard F/A-18 aircraft, as well as unique research displays used by

the HARV pilot. These displays in the head-up display included fixed reticles for tracking tasks,

vertical lines for target gross acquisitions during tracking, and displays to annunciate the aircraft

control mode. Another part of the flight software was the on-board excitation system (OBES).

Software in the OBES held preprogrammed research and envelope expansion maneuvers and could

perform frequency sweeps, doublets, or even act to degrade control power for individual or

multiple surfaces. The OBES was used for flutter envelope clearance, 48 control power research

studies, 49 and aerodynamic 41'5°-54 and control law parameter identification research. 25

Forebody Strakes

For the third and final phase in the HARV flight test project, a set of ANSER was installed on

the forebody of the HARV.I° These strakes were designed with a longitudinal hinge line to actively
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controltheforebodyvorticesandseparationlines(fig. 12),whichallowedroll controlat higho_to
beperformed.55Thestrakesweredesignedandtestedby NASA Langleyandinstalledandflown
at NASA Dryden.Control lawswerealsodesignedbyNASA Langleyto controlthestrakes.The
ANSER required that two additional control-surfacecommandsbe brought from the FCCs.
Initially, it wasthoughtthattheTVCS or two vaneswouldhaveto bedeactivatedbecauseof the
limited actuatoranaloginput/outputavailablefrom theFCCs.This deactivationwouldnot allow
back-to-backcomparisonsof theTVCS andANSERor of an integratedANSER-TVCS mode.
Finally, theFCCmotherboardcardsweremodified,whichallowedcommandsto betappedout of
theDPRAM andinto ananaloginterfacebox.Theinterfacebox isrequiredto performall thefault
detectionandactuatorcontrolthatis normallydoneby theFCCs.

EC9543249-14
Figure 12.Forebodyvortexcontrolstrakesinstalledon theHARV.

Simulation

Simulationswerean importantcomponentof theprojectsupportandresearchinfrastructure.
Thebatchversionof the simulationwasthe most basic,followed by a fixed-basecockpit with
softwaresimulation,thenahardware-in-the-loopsimulationwith varying levelsof hardware,and
finally a full iron-bird F-18 with completehydraulicsand actuatorsfor all surfacesexceptfor
leading-andtrailing-edgeflaps.Thefixed-basecockpitcouldalsousealargescreenvisualdisplay
mountedin front of thecockpit.Manyof thecomponentsin thecockpitareflight-ratedhardware,
such as the up-front controller, the head-updisplay, and the digital-display interfaces.The
hardware-in-the-loopsimulationusedFCCs,aninterfacebox,andsimulatedactuatormodels.The
missioncomputerswereusedin all fixed-basesimulations.

18



The simulation aerodynamicmodel used was the MDA F-18 aerodynamicmodel. The
aerodynamicmodelreflectedresultsobtainedfrom flight testing.To this model,NASA addedthe
pitching-momentincrements,drag increment,anddirectional-stabilityincrementcausedby the
SRCinstallation;ruddercontrolpowerincrementcausedby thrustvectoringin thepitchplane;and
aerodynamicinteractioncausedby thrustvectoring.16Rotarybalancedatawereinvestigatedbut
werenot used.The comparisonof spinsfrom flight datawith simulationdataindicatedthat the
incorporationof rotarybalancedatawith theMDA aerodynamicmodelwould resultin excessive
dampingin the simulation.This simulationfacility wasbuilt at NASA Dryden and dedicated
almostexclusivelyto theHARV project.

NASA Langleyalsomadeextensiveuseof theirdifferentialmaneuveringsimulatorfor control
law evaluations and development.Project pilots made extensive use of the differential
maneuveringsimulatorduring theearly developmentcycleof control laws that wereeventually
usedin flight evaluation1°'56andthemaneuverdevelopmentthatsubsequentlyimprovedtheresults
and efficiency of the flight test. The PatuxentRiver Naval Air Test Center(Lexington Park,
Maryland)dome simulationwasusedto evaluatepowerapproachwith variousfailures of the
TVCS.Thisevaluationwasnotrepeatedfor theforebodystrakephaseof flying becausethestrakes
wereineffectiveat the low anglesof attack(lessthan15° o0.t°

RemotelyAugmentedVehicleSystem

TheRAV capabilitywasalsoincorporatedontheHARV.57This systemalloweduplinkcontrol
of the instrumentlandingsystemneedlesandotherindicatorsusedto guide the pilot to precise
flight conditions.Otherwise,excessivepilot workloadcausedby the high-o_environmentmight
preventaccurateresearchmaneuversfrombeingaccomplished.A photographicstill cameraonthe
rightwingtip of theaircraftcouldbe triggeredfrom aconsoleon thegroundusingtheRAV system
aswell. The RAV systemandsimulationfacilities werecloselyalignedandexemplify the well-
foundedinfrastructurethat aidedthe ability of the project to gatherdata in the most efficient
mannerpossible.

RESEARCHPHASES

Becauseof the largeresearchprogramto beperformed,astagedresearchandinstrumentation
approachwastaken(fig. 13).Eachflight phasewasusedto performspecificresearch.Thethree
phasesaredescribedin thefollowing subsections.

PhaseOne

Phaseoneconsistedmostlyof aerodynamicresearch.Somepreliminarywork for theTVCS
wasperformedby controlsandpropulsion.
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Figure 13. HARV research phase chronology.
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Aerodynamics

Aerodynamic research dominated in phase one (fig. 14). Specific aerodynamic experiments

performed included extensive flush-port pressure surveys over the forebody and the LEX of the

aircraft, on- and off-surface flow visualization, LEX vortex surveys, and wing rock surveys. The

forebody pressure data allowed characterization of forebody vortex footprints over the HARV

aircraft. 58-6] Research using these data included flush airdata sensing 62-66 and wing rock at high oc,

and provided baseline data for comparison to wind-tunnel and computational fluid dynamics

results. 39 Photographs of PGME traces (on-surface flow visualization) were also used for

comparison with computational fluid dynamics and wind-tunnel results. 67 One result was the

discovery of a laminar separation bubble on the forebody that allowed fine-tuning of some

computational fluid dynamics codes and an interpretation of wind-tunnel results; results

comparisons are excellent (fig. 15). The LEX survey rake data allowed characterization of the LEX

vortex for comparison to light-sheet wind-tunnel and computational fluid dynamics data (fig. 16).

The smoke system allowed off-surface flow visualization of the LEX and forebody vortices. The

system also allowed comparisons of vortex burst point and vortex interaction patterns with wind-

tunnel and water-tunnel data. Wing rock was extensively documented in this phase of the program
with the smoke systems, forebody pressures, and flight mechanics instrumentation.

Controls

Baseline data were gathered in the control discipline with the HARV control system. This

work was performed in preparation for the thrust-vectoring work in phase two. Principle interest

was in the FCCs and the 1553 bus, both of which required modification for the thrust-vectoring
flight tests.
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• Direct comparisons
- Computational fluid dynamics
- Small- and large-scale wind tunnel
- Flight

• On- and off-surface flow visualization
- Smoke
- Tufts and dye

• Aerodynamic parameter identification

• Alrdeta

- Innovative high alpha probes
- Flush Air Oeta Sensing (FADS) System

• Pmnum surveys
- Low rate surface pmuura
-Tall buffet
- Vortex rake surveys

Figure 14. Aerodynamic research.

_o0C_7

Wind Tunnel Oil Flow Visualization, cr =36 °
16 Percent F-18 Model, LaRC 14 x 22-Foot Subsonic Tunnel

960698

Figure 15. Forebody flow visualization in wind tunnels and flight with significant laminar flow and

separation.
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Details of F-18 Forebody Fluid Mechanics
On-Surface Flow Visualization
• Anomalies

- Wind tunnel model testa indicated
significant amounts of laminar flow

- Full-scale aircraft was not expected to
experience laminar flow

• Flight result
- Significant amount of laminar

flow noted In flight

Figure 15. Concluded.

960699

EC90 319-106

Figure 16. Leading-edge extension vortex survey rake results.
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EC90319-107

Figure16.Concluded.

EC90319-109
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Propulsion

Baselinedataweregatheredin thepropulsiondisciplinewith theHARV systemsinpreparation
for thethrust-vectoringwork in phasetwo. Principleinterestwas in theareaof baselinedataon
enginecharacteristicsusedto createathrustestimatorfor controlswork with thrustvectoring.

PhaseTwo

Phasetwo of the flight program concentratedmostly on thrust-vectoringcontrols and
propulsion, although some aerodynamicresearchwas still conducted.Initially, 25 different
experimentswerevying for flight timein thisphase.Manyof theseexperimentsweredeletedafter
prioritizationof experiments,andonly thosemostapplicableto theHATP wereselectedfor flight.

Aerodynamics

Aerodynamicresearchin phasetwoobtainedLEX andforebodydataasbeforebutat higherot
conditionspossiblebecauseof the TVCS capability.Wing, aft fuselage,and left vertical-tail
pressuresurveyswerealsoobtainedduringthisphase.21Highsample-ratedynamicpressureswere
measuredon theright verticaltail for tail buffetresearch(fig. 17).Thetail buffet dataweretaken
with the LEX fencesboth installed and removedfor vortex-tail interactionstudiesand were
comparedwith full-scalewind-tunneland computationalfluid dynamicsdata.68'69The OBES,
installed with the RFCSfor this phaseof flying, allowedcomparisonand evaluationof three
different techniquesof aerodynamicparameteridentification.4_'s°-54 These techniques were an

OBES-programmed sequential single-surface doublet series, an OBES-programmed input to a

single surface, and a RAV-programmed optimal pilot-flown series.

Figure 17. Tail buffet data from flight. Mach = 0.6; ot = 30 °.
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Controls

Controlsresearchcametotheforefrontduringphasetwo (fig. 18).70Theadditionof theTVCS
andtheassociatedchangesto theaircraftsystemscausedgreatchangesto operationof theflight
test.The addedcontrolpowerof theTVCS eliminatedthetransientwing rock in the 38"-45° o_
region(fig. 19).Sevendifferentcontroldesignmethodologieswereusedfor TVCS operation.

qualities 1
evaluation

I"VCS; ANSER

Design
guidelines

HANG, HAIRRY,
STEMS

RFCS; TVCS
NASA-O

Variable-gain
output feedback

NASA-1
and ANSER

CRAFT
(Control power,

Robustness, Agility,
and Flying qualities
Tmdeoffl) NASA-1

and ANSER

Figure 18. Controls research.

Pseudo
controls
NASA-1

and ANSER

960701

RFCS off (phase 1)
30 , ; ;

20 ........... i ......................

10 ....... ' ..............

-10 --__01....V ---_'-.......... :-- : t

20 ' ', ', '

_0......... i.......... !........... i---

........................
Time, sec

Deg
Roll angle

RFCS on (phase 2) ------ Sideslip angle

.......... i ............................ '

_-"_" - !...... -_i -- -

........... i ............................

Deg/sec
Roll rate

---- Yew rate

0 10 20 30
Time, sec

960702

Figure 19. HARV dynamic motion at 40 ° (_ without the TVCS (phase one data) and with the TVCS

(phase two data).
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Regardlessof designmethodology,the longitudinalcontrol laws usedo_commandat high
anglesof attack.In all cases,the_ commandbeganto blendwell beforethemaximumlift tx was

reached. Where the crossover occurred depended upon the individual control law. At low angles
of attack, the longitudinal control laws are conventional blends of pitch-rate command and normal-

force command. Because of program constraints, pitch-rate command control law architectures at
high angles of attack were not investigated.

The lateral axis commanded wind-axis roll rate. Directional control commands varied between

control laws from pure angle-of-sideslip command to stability-axis roll rate. In every case, the

control laws were designed to be flown "feet on the floor." Many pilots, although not all, expressed
dissatisfaction with this scheme for yaw control at high angles of attack.

The first control law was the initial control law set, referred to as NASA-071 and originally

provided by MDA as a part of the TVCS modification. The initial set was later modified by the

NASA Langley, MDA, and NASA Dryden team. The NASA-0 control law used a longitudinal

model-following design and an eigenstructure assignment design in the lateral--directional axes.

This control law also used a schedule for mixing pitch and yaw commands to the TVCS vanes,

referred to as Mixer 1.37 Because much of the high-a maneuvering proposed for the HARV looks

like "controlled-spin" conditions, a down mode from the RFCS to the basic flight control system

during these maneuvers would satisfy the built-in spin mode logic, and an immediate spin recovery

would be initiated. As a result, yaw rate-expansion flights (spins) were flown as a part of the

envelope expansion of the NASA-0 control law and the TVCS. Seventy-five spin attempts (at

flight idle and military power settings) resulted in 70 fully developed spins. Low and oscillatory

spin modes were investigated with yaw rates varying from 25 deg/sec to as high as 90 deg/sec (left

and right). This yaw-rate expansion gained confidence that the SRC would not be required

to recover the aircraft from a spin and resulted in the SRC never being fired in flight. During

phase two, NASA Langley developed a control law, called NASA-l, as a precursor to the later

TVCS and ANSER control law. 25,26The NASA-1 control law, and later the ANSER control law,

used a technique called variable-output feedback gain to design the longitudinal axis. 72,73 An

eigenstructure-assignment design procedure known as control power, robustness, agility, and

flying qualities tradeoffs (CRAFF) 26,74 was used in the lateral--directional axes in combination with

a control power allocation technique called pseudo controls. 75 In addition, NASA-1 and ANSER

control laws used Mixer 4.276 to control the TVCS vanes. The experience gained with the NASA- 1

control law as risk reduction for the ANSER control law was extremely positive. The OBES

allowed variation in surface rates and limits to vary control power for evaluation of various levels

of pitch recovery in a NASA Langley-led research task called High-Alpha Nosedown Guidelines

(HANG). 49 Later, a similar set of evaluations was made in lateral-directional variations called

High-Angle-of-Incidence Requirements for Roll and Yaw (HAIRRY). 77

Guest-pilot programs were occasionally flown during the course of the program. Some of these

guest-pilot programs were limited in scope, such as demonstration of the aircraft capabilities;

others were more extensive and produced significant findings in control power effectiveness TM and

flying qualities. 77 Guest pilots had a large role in the HARV project, especially near the end of the

program. The HARV project also saw some turnover of pilots because of the length of the program.

This turnover resulted in a large cross section of piloting technique in evaluation of the aircraft that
was further augmented by the guest-pilot pool (table 2).
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Table2. Pilotsof theNASA F-18HighAlphaResearchVehicle.

Organization Agency

ProjectPilots

EinarEnevoldson Dryden NASA

EdSchneider Dryden NASA

Bill Dana Dryden NASA

Jim Smolka Dryden NASA

Mark Stucky Dryden NASA

Phil Brown Langley NASA

GuestPilots

DavePrather PatuxentRiver U.S.Navy

ChuckSternberg PatuxentRiver U.S.Navy

Ric Traven PatuxentRiver CanadianAir Force

Billie Flynn F-16MATV CanadianAir Force

C. J.Loria PatuxentRiver U.S.MarineCorps

DanGriffith DefenseResearchAgency UnitedKingdom

LarryWalker McAir McDonnell-Douglas

JeffPeer F-16VISTA CalSpan

RogersSmith Dryden NASA

GregFenton PatuxentRiver U.S.Navy

Bob Roth PatuxentRiver U.S.Navy

TomMcMurtry Dryden NASA

GordonFullerton Dryden NASA

DanaPurifoy Dryden NASA

Validation flights of a proposedhigh-o_MIL-STD-1797Aguidelinewerealsomadeby using
basicfightermaneuversandsomelimited air combatmaneuvering.Thismaneuverseriesis called
thestandardtestevaluationmaneuversset(STEMS).79
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Propulsion

Duringexpansionof thehigh-orenvelopewith theTVCS,aconcernwasraisedregardingthe
possiblestall marginof the GeneralElectricF404engines.During phaseone,no problemshad
beenencountered,butwith theincreasedctin phasetwo,theprecautionwastakenof addingabias
in the"T56" feedback.TheT56parameteris atemperaturefeedbacksensedbetweenstations5 and
6in theengine,andaddingabiasto thisfeedbackresultsin greaterstallmarginthanexistswithout
it. Thebiaswasthree-positionselectable:nobias,40 R in themediumposition,and 85R in the
highposition.Duringtheenvelopeexpansion,nounintentionalenginestallswereencountered,and
theT56 biaswasneverrequiredduringanyof theflight testing.

Partway throughphasetwo, therightengineandinlet of theHARV aircraftwereextensively
instrumented.27Flushstaticportsandhigh-ratepressuresensorswereinstalledin the inlet lip and
down theduct. Thehighly instrumentedinlet rakewasinstalledjust forward of theright engine
compressorfaceat this time.The datafrom theseinstrumentswererecordedonboardtheHARV
aircraft. A high rateof digital datarecordingwasusedin thehopeof capturinganenginestall
during high-ordynamicmaneuveringflight. During steady-stateflight, no engineanomalieshad
beenrecorded;to captureanenginecompressorstall,military powersettingspinswereflown to
90deg/secyaw rate. In thesemaneuvers,severalself-recoveringpop-stallsdid occur,and the
dataweresuccessfullycaptured(fig. 20). During this phase,investigationswerealsomadeinto
planarwaves (organpipe effect), and researchcontinuedin enginediagnosticsand real-time
thrustmeasurement.At theendof phasetwo, the inlet rakeandmostof the inlet instrumentation
wasremoved.

PhaseThree

Phasethreehadprimaryemphasisonforebodyvortexcontrol,38calledtheANSERsystem.The
programlead for this phasewas NASA Langley, with NASA Dryden providing support in
implementationof theANSERsystemin theflight program.

ActuatedNoseStrakesfor EnhancedRolling

Controlsresearchfor theANSER systemhelpedto evaluatethe benefitsandtradeoffswith
regardto thrustvectoring,strakes,andcombinationsof the two. By usingthe samecontrol law
designsynthesisasNASA- 1andmakingmodeandgainselectionavailableto thepilot throughthe
digital-display interfaces,direct back-to-backcomparisonswere performedto quantify these
differences.Thecontrol law wasa developmentandexpansionof thepreviouslyflown NASA-1
control laws.26Threemodeswereavailableto thepilot with this system.Thesethreemodeswere
a thrust vectoring-only mode,a thrust-vectoringmode in longitudinal control with a thrust-
vectoredand strake-blendedmodefor lateral control, and a strakemodewith thrust-vectoring
control longitudinally and strakescontrolling the lateral mode.Additional OBES-programmed
maneuverswereflown to investigateinternalclosed-loopcontrollaw parametersfor identification
to helpcharacterizetheoverallsystemperformanceof theANSERcontrolsandtheaircraft.

28



Pitch rates: - 45 deg/sec to 45 deg/sec
Yaw rates: - 5 deg/eec to - 55 deg/sec
Angles of attack: 45 ° to 100 °
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Figure 20. Rake and inlet on right side, in-flight compressor pop-stall time history.

Aerodynamics

Forebody pressures were used to characterize effects of forebody vortex control. 10,55Additional

pressure ports were installed on the strakes to measure integrated forces and moments and to

examine areas of separation and the vortex footprints on the forebody. The smoke system was used

again, and effects of forebody vortex rollup into the stronger LEX vortices were quantified. One

result of the smoke visualization tests was the reduction of the vortex coherence to 4 or 5 body

lengths of the aircraft behind the strake. Comparison of the strake vortex path with wind-tunnel and
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water-tunnelresultshasshownthe flight andwind-tunneldataagreewell. The strakevortex is
approximatelyonevertical-tail heightabovethetips of theverticaltails.Thewater-tunnelresults
indicate the strakevortex passesbetweenthe tips of the vertical tails (fig. 21). SomeOBES-
programmedaerodynamicparameteridentificationmaneuverswerealso flown to verify wind-
tunnelandcomputationalfluid dynamicspredictionsregardingtheeffectivenessof thestrakes.

ANSER Flow Visualization
(z = 30", Strake Deployed 90"
Flight

Wind tunnel

Strike vortex

Water tunnel

In-flight vlsualizabon of forebody/strake flowfletd
provides understanding of flowfleld Interaction,
control coupling, and CFD validation

Figure 21. ANSER forebody vortex control comparisons.

9_7_

Controls

Controls research in phase three concentrated on the ANSER control laws. An evaluation of

the STEMS flying qualities was also made, 79.8° and a short study of falling-leaf characteristics of

the HARV configuration was flown. These maneuvers may be used in a MIL-STD-1797A release

to evaluate aircraft flying qualities. The HARV investigation is the most complete of the STEMS

evaluations yet flown. The STEMS evaluations were performed with ANSER control laws flown

back-to-back with the 701E computer control laws as a control. The ANSER control laws allowed

the variation in control effectors and compared forebody strake vortex control with thrust-

vectoring and basic F-18 aerodynamic control. The intent was to evaluate the ability of the

maneuver to discriminate the high-o_ flying qualities differences between the augmented

unconventional control and baseline aircraft.
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CONCLUDINGREMARKS

TheNASA F-18High AlphaResearchVehicle(HARV) project,asapartof theNASA High-
Alpha Technology Program (HATP), hasproven to be a flexible, capableresearchtool to
investigatethehigh-angle-of-attackregimewith particularemphasisin theareasof aerodynamics,
propulsion,control law research,andhandlingqualities.Manyof thesecapabilitieswereessential
to theperformanceof theprojectandto theextensivebodyof researchproducedby theprogram.

Theeffectivenessandtimelinessof theprojectweregreatlyaidedby innovativethinking and
execution.Theaircraftwasanexcellenttool for researchin manyareasbecauseof awell-founded
infrastructure,significantresearchinstrumentation,aflexible approachto problemsolving,anda
dedicatedresearchteam.The researchbaseincorporatedinto the HARV projectand the HATP
spannedall majoraeronauticscenterswithin NASA.

Two major mechanicalsystemsweredeveloped.The first systemwas the thrust-vectoring
control system.Thesevaneswereintendedasanadd-onresearchsystemonly, hencetheir boiler-
plateandmaintenance-intensivenature.Emergencybackupsystems,whichwererisk-reducingin
envelopeclearance,provedto have a limited useful life that wasdesignedinto the program
schedule.Theresearchinstrumentationwaskeptseparatefrom theaircraftsystemssothatparallel
work could be performedon instrumentationand aircraftsystems.The secondsystemwas the
actuatednosestrakesfor enhancedrolling control laws.Thesecontrollawswerealsodesignedas
aresearchsystemfor forebodyvortexcontrol.Thespinrecoverychutewasalsofound to havea
limited usefullife within theprogram,butnoprovisionfor its deletionwasevermade.

The three flight phasesof the project stagedintensiveresearchinto different partsof the
schedule,allowing forcompletionof averyambitiousresearchprogram.Aerodynamicsdominated
thefirst phaseof theresearchflights,andcontrolsandpropulsiondominatedphasetwo. Thethird
andfinal phaseof theflight researchwasprimarily in forebodyvortexcontrol,althoughsignificant
work wasalsodonein variouscontrollaw synthesistechniquesandflying qualitiesevaluations.
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